Tag Archives: tractor power tiller

China Good quality Harvester Farm Harrow Tractor Pto Drive Shaft and Power Tiller Cardan Shaft for Agricultural Machinery Spare Parts

Product Description

Harvester Farm Harrow Tractor Pto Drive Shaft and Power Tiller Cardan Shaft for Agricultural Machinery Spare Parts
 

Product Description

A Power Take-Off shaft (PTO shaft) is a mechanical device utilized to transmit power from a tractor or other power source to an attached implement, such as a mower, tiller, or baler. Typically situated at the rear of the tractor, the PTO shaft is driven by the tractor’s engine through the transmission.
The primary purpose of the PTO shaft is to supply a rotating power source to the implement, enabling it to carry out its intended function. To connect the implement to the PTO shaft, a universal joint is employed, allowing for movement between the tractor and the implement while maintaining a consistent power transfer. 

Here is our advantages when compare to similar products from China:
1.Forged yokes make PTO shafts strong enough for usage and working;
2.Internal sizes standard to confirm installation smooth;
3.CE and ISO certificates to guarantee to quality of our goods;
4.Strong and professional package to confirm the good situation when you receive the goods.

Product Specifications

 

 

  

 

Packaging & Shipping

 

 

Company Profile

HangZhou Hanon Technology Co.,ltd is a modern enterprise specilizing in the development,production,sales and services of Agricultural Parts like PTO shaft and Gearboxes and Hydraulic parts like  Cylinder , Valve ,Gearpump and motor etc..
We adhere to the principle of ” High Quality, Customers’Satisfaction”, using advanced technology and equipments to ensure all the technical standards of transmission .We follow the principle of people first , trying our best to set up a pleasant surroundings and platform of performance for each employee. So everyone can be self-consciously active to join Hanon Machinery.

FAQ

1.What’re your main products?

we currently product Agricultural Parts like PTO shaft and Gearboxes and Hydraulic parts like Cylinder , Valve ,Gear pump and motor.You can check the specifications for above product on our website and you can email us to recommend needed product per your specification too.

2.What’s the lead time for a regular order?

Generally speaking, our regular standard product will need 30-45days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

3.What’s your warranty terms?

One year.

4.Can you send me a price list?

For all of our product, they are customized based on different requirements like length, ratio,voltage,and power etc. The price also varies according to annual quantity. So it’s really difficult for us to provide a price list. If you can share your detailed requirements and annual quantity, we’ll see what offer we can provide.

5.What’s the payment term? 

When we quote for you,we will confirm with you the way of transaction,FOB,CIFetc.<br> For mass production goods, you need to pay 30% deposit before producing and70% balance against copy of documents.The most common way is by T/T.  

6.How to deliver the goods to us?

Usually we will ship the goods to you by sea.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Type: Agricultural Spare Part, Agricultural Spare Part
Usage: Agricultural Products Processing, Farmland Infrastructure, Tillage, Harvester, Planting and Fertilization, Grain Threshing, Cleaning and Drying, Agricultural Machinery,Farm Tractor, Agricultural Products Processing, Farmland Infrastructure, Tillage, Harvester, Planting and Fertilization, Grain Threshing, Cleaning and Drying, Agricultural Machinery, Farm Tractor
Material: Carbon Steel, 45cr Steel, Carbon Steel
Samples:
US$ 20/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pto shaft

What maintenance practices are crucial for prolonging the lifespan of drive shafts?

To prolong the lifespan of drive shafts and ensure their optimal performance, several maintenance practices are crucial. Regular maintenance helps identify and address potential issues before they escalate, reduces wear and tear, and ensures the drive shaft operates smoothly and efficiently. Here are some essential maintenance practices for prolonging the lifespan of drive shafts:

1. Regular Inspection:

Performing regular inspections is vital for detecting any signs of wear, damage, or misalignment. Inspect the drive shaft visually, looking for cracks, dents, or any signs of excessive wear on the shaft itself and its associated components such as joints, yokes, and splines. Check for any signs of lubrication leaks or contamination. Additionally, inspect the fasteners and mounting points to ensure they are secure. Early detection of any issues allows for timely repairs or replacements, preventing further damage to the drive shaft.

2. Lubrication:

Proper lubrication is essential for the smooth operation and longevity of drive shafts. Lubricate the joints, such as universal joints or constant velocity joints, as recommended by the manufacturer. Lubrication reduces friction, minimizes wear, and helps dissipate heat generated during operation. Use the appropriate lubricant specified for the specific drive shaft and application, considering factors such as temperature, load, and operating conditions. Regularly check the lubrication levels and replenish as necessary to ensure optimal performance and prevent premature failure.

3. Balancing and Alignment:

Maintaining proper balancing and alignment is crucial for the lifespan of drive shafts. Imbalances or misalignments can lead to vibrations, accelerated wear, and potential failure. If vibrations or unusual noises are detected during operation, it is important to address them promptly. Perform balancing procedures as necessary, including dynamic balancing, to ensure even weight distribution along the drive shaft. Additionally, verify that the drive shaft is correctly aligned with the engine or power source and the driven components. Misalignment can cause excessive stress on the drive shaft, leading to premature failure.

4. Protective Coatings:

Applying protective coatings can help prolong the lifespan of drive shafts, particularly in applications exposed to harsh environments or corrosive substances. Consider using coatings such as zinc plating, powder coating, or specialized corrosion-resistant coatings to enhance the drive shaft’s resistance to corrosion, rust, and chemical damage. Regularly inspect the coating for any signs of degradation or damage, and reapply or repair as necessary to maintain the protective barrier.

5. Torque and Fastener Checks:

Ensure that the drive shaft’s fasteners, such as bolts, nuts, or clamps, are properly torqued and secured according to the manufacturer’s specifications. Loose or improperly tightened fasteners can lead to excessive vibrations, misalignment, or even detachment of the drive shaft. Periodically check and retighten the fasteners as recommended or after any maintenance or repair procedures. Additionally, monitor the torque levels during operation to ensure they remain within the specified range, as excessive torque can strain the drive shaft and lead to premature failure.

6. Environmental Protection:

Protecting the drive shaft from environmental factors can significantly extend its lifespan. In applications exposed to extreme temperatures, moisture, chemicals, or abrasive substances, take appropriate measures to shield the drive shaft. This may include using protective covers, seals, or guards to prevent contaminants from entering and causing damage. Regular cleaning of the drive shaft, especially in dirty or corrosive environments, can also help remove debris and prevent buildup that could compromise its performance and longevity.

7. Manufacturer Guidelines:

Follow the manufacturer’s guidelines and recommendations for maintenance practices specific to the drive shaft model and application. The manufacturer’s instructions may include specific intervals for inspections, lubrication, balancing, or other maintenance tasks. Adhering to these guidelines ensures that the drive shaft is properly maintained and serviced, maximizing its lifespan and minimizing the risk of unexpected failures.

By implementing these maintenance practices, drive shafts can operate reliably, maintain efficient power transmission, and have an extended service life, ultimately reducing downtime and ensuring optimal performance in various applications.

pto shaft

Can you provide real-world examples of vehicles and machinery that use drive shafts?

Drive shafts are widely used in various vehicles and machinery to transmit power from the engine or power source to the wheels or driven components. Here are some real-world examples of vehicles and machinery that utilize drive shafts:

1. Automobiles:

Drive shafts are commonly found in automobiles, especially those with rear-wheel drive or four-wheel drive systems. In these vehicles, the drive shaft transfers power from the transmission or transfer case to the rear differential or front differential, respectively. This allows the engine’s power to be distributed to the wheels, propelling the vehicle forward.

2. Trucks and Commercial Vehicles:

Drive shafts are essential components in trucks and commercial vehicles. They are used to transfer power from the transmission or transfer case to the rear axle or multiple axles in the case of heavy-duty trucks. Drive shafts in commercial vehicles are designed to handle higher torque loads and are often larger and more robust than those used in passenger cars.

3. Construction and Earthmoving Equipment:

Various types of construction and earthmoving equipment, such as excavators, loaders, bulldozers, and graders, rely on drive shafts for power transmission. These machines typically have complex drivetrain systems that use drive shafts to transfer power from the engine to the wheels or tracks, enabling them to perform heavy-duty tasks on construction sites or in mining operations.

4. Agricultural Machinery:

Agricultural machinery, including tractors, combines, and harvesters, utilize drive shafts to transmit power from the engine to the wheels or driven components. Drive shafts in agricultural machinery are often subjected to demanding conditions and may have additional features such as telescopic sections to accommodate variable distances between components.

5. Industrial Machinery:

Industrial machinery, such as manufacturing equipment, generators, pumps, and compressors, often incorporate drive shafts in their power transmission systems. These drive shafts transfer power from electric motors, engines, or other power sources to various driven components, enabling the machinery to perform specific tasks in industrial settings.

6. Marine Vessels:

In marine applications, drive shafts are commonly used to transmit power from the engine to the propeller in boats, ships, and other watercraft. Marine drive shafts are typically longer and designed to withstand the unique challenges posed by water environments, including corrosion resistance and appropriate sealing mechanisms.

7. Recreational Vehicles (RVs) and Motorhomes:

RVs and motorhomes often employ drive shafts as part of their drivetrain systems. These drive shafts transfer power from the transmission to the rear axle, allowing the vehicle to move and providing propulsion. Drive shafts in RVs may have additional features such as dampers or vibration-reducing components to enhance comfort during travel.

8. Off-Road and Racing Vehicles:

Off-road vehicles, such as SUVs, trucks, and all-terrain vehicles (ATVs), as well as racing vehicles, frequently utilize drive shafts. These drive shafts are designed to withstand the rigors of off-road conditions or high-performance racing, transmitting power efficiently to the wheels and ensuring optimal traction and performance.

9. Railway Rolling Stock:

In railway systems, drive shafts are employed in locomotives and some types of rolling stock. They transfer power from the locomotive’s engine to the wheels or propulsion system, enabling the train to move along the tracks. Railway drive shafts are typically much longer and may have additional features to accommodate the articulated or flexible nature of some train configurations.

10. Wind Turbines:

Large-scale wind turbines used for generating electricity incorporate drive shafts in their power transmission systems. The drive shafts transfer rotational energy from the turbine’s blades to the generator, where it is converted into electrical power. Drive shafts in wind turbines are designed to handle the significant torque and rotational forces generated by the wind.

These examples demonstrate the broad range of vehicles and machinery that rely on drive shafts for efficient power transmission and propulsion. Drive shafts are essential components in various industries, enabling the transfer of power from the source to the driven components, ultimately facilitating movement, operation, or the performance of specific tasks.

pto shaft

What benefits do drive shafts offer for different types of vehicles and equipment?

Drive shafts offer several benefits for different types of vehicles and equipment. They play a crucial role in power transmission and contribute to the overall performance, efficiency, and functionality of various systems. Here’s a detailed explanation of the benefits that drive shafts provide:

1. Efficient Power Transmission:

Drive shafts enable efficient power transmission from the engine or power source to the wheels or driven components. By connecting the engine or motor to the driven system, drive shafts efficiently transfer rotational power, allowing vehicles and equipment to perform their intended functions. This efficient power transmission ensures that the power generated by the engine is effectively utilized, optimizing the overall performance and productivity of the system.

2. Versatility:

Drive shafts offer versatility in their applications. They are used in various types of vehicles, including cars, trucks, motorcycles, and off-road vehicles. Additionally, drive shafts are employed in a wide range of equipment and machinery, such as agricultural machinery, construction equipment, industrial machinery, and marine vessels. The ability to adapt to different types of vehicles and equipment makes drive shafts a versatile component for power transmission.

3. Torque Handling:

Drive shafts are designed to handle high levels of torque. Torque is the rotational force generated by the engine or power source. Drive shafts are engineered to efficiently transmit this torque without excessive twisting or bending. By effectively handling torque, drive shafts ensure that the power generated by the engine is reliably transferred to the wheels or driven components, enabling vehicles and equipment to overcome resistance, such as heavy loads or challenging terrains.

4. Flexibility and Compensation:

Drive shafts provide flexibility and compensation for angular movement and misalignment. In vehicles, drive shafts accommodate the movement of the suspension system, allowing the wheels to move up and down independently. This flexibility ensures a constant power transfer even when the vehicle encounters uneven terrain. Similarly, in machinery, drive shafts compensate for misalignment between the engine or motor and the driven components, ensuring smooth power transmission and preventing excessive stress on the drivetrain.

5. Weight Reduction:

Drive shafts contribute to weight reduction in vehicles and equipment. Compared to other forms of power transmission, such as belt drives or chain drives, drive shafts are typically lighter in weight. This reduction in weight helps improve fuel efficiency in vehicles and reduces the overall weight of equipment, leading to enhanced maneuverability and increased payload capacity. Additionally, lighter drive shafts contribute to a better power-to-weight ratio, resulting in improved performance and acceleration.

6. Durability and Longevity:

Drive shafts are designed to be durable and long-lasting. They are constructed using materials such as steel or aluminum, which offer high strength and resistance to wear and fatigue. Drive shafts undergo rigorous testing and quality control measures to ensure their reliability and longevity. Proper maintenance, including lubrication and regular inspections, further enhances their durability. The robust construction and long lifespan of drive shafts contribute to the overall reliability and cost-effectiveness of vehicles and equipment.

7. Safety:

Drive shafts incorporate safety features to protect operators and bystanders. In vehicles, drive shafts are often enclosed within a protective tube or housing, preventing contact with moving parts and reducing the risk of injury in the event of a failure. Similarly, in machinery, safety shields or guards are commonly installed around exposed drive shafts to minimize the potential hazards associated with rotating components. These safety measures ensure the well-being of individuals operating or working in proximity to vehicles and equipment.

In summary, drive shafts offer several benefits for different types of vehicles and equipment. They enable efficient power transmission, provide versatility in various applications, handle torque effectively, offer flexibility and compensation, contribute to weight reduction, ensure durability and longevity, and incorporate safety features. By providing these advantages, drive shafts enhance the performance, efficiency, reliability, and safety of vehicles and equipment across a wide range of industries.

China Good quality Harvester Farm Harrow Tractor Pto Drive Shaft and Power Tiller Cardan Shaft for Agricultural Machinery Spare Parts  China Good quality Harvester Farm Harrow Tractor Pto Drive Shaft and Power Tiller Cardan Shaft for Agricultural Machinery Spare Parts
editor by CX 2024-03-19

China manufacturer Quality Small Gasoline Diesel Farm Garden Power Tiller Cultivator Rotary Tillage Machine Walking Tractor Disc Harrow Spare Parts 800 900 Drive Gear and Shaft near me factory

Merchandise Description

Top quality Modest Gasoline Diesel Farm Backyard garden Electricity Tiller Cultivator Rotary Tillage Device Walking Tractor Disc Harrow Spare Elements 800 900 Push Equipment and Shaft

Notes: What you see is ONLY a Small Portion of our merchandise Scope, you are happy to allow us know your specific elements need so that we can offer you you the Right Parts with Correct Expense, Just Right with US!

We Also Offer Other designs of Tiller Areas , Really feel Totally free to get in touch with us for much more data. Can Also Check CZPT On-line to get our newest updates.

What is a travel shaft?

If you discover a clicking noise although driving, it is most probably the driveshaft. An knowledgeable vehicle mechanic will be able to explain to you if the sound is coming from equally sides or from 1 aspect. If it only transpires on one side, you need to verify it. If you observe sounds on equally sides, you ought to speak to a mechanic. In both scenario, a alternative driveshaft ought to be straightforward to find.
air-compressor

The travel shaft is a mechanical component

A driveshaft is a mechanical gadget that transmits rotation and torque from the engine to the wheels of the motor vehicle. This part is essential to the procedure of any driveline, as the mechanical energy from the engine is transmitted to the PTO (energy get-off) shaft, which hydraulically transmits that electricity to linked products. Distinct generate shafts include diverse mixtures of joints to compensate for modifications in shaft duration and angle. Some types of drive shafts incorporate connecting shafts, interior continual velocity joints, and external fastened joints. They also include anti-lock program rings and torsional dampers to avoid overloading the axle or leading to the wheels to lock.
Though driveshafts are relatively mild, they want to deal with a lot of torque. Torque utilized to the travel shaft produces torsional and shear stresses. Since they have to stand up to torque, these shafts are designed to be light-weight and have tiny inertia or excess weight. As a result, they typically have a joint, coupling or rod among the two areas. Components can also be bent to accommodate adjustments in the distance in between them.
The generate shaft can be produced from a assortment of supplies. The most typical materials for these components is steel, even though alloy steels are usually utilized for large-power purposes. Alloy steel, chromium or vanadium are other supplies that can be used. The sort of material used is dependent on the software and size of the ingredient. In a lot of instances, metallic driveshafts are the most tough and most affordable selection. Plastic shafts are employed for light obligation applications and have various torque stages than metal shafts.

It transfers power from the engine to the wheels

A car’s powertrain is made up of an electrical motor, transmission, and differential. Each and every segment performs a distinct task. In a rear-wheel travel automobile, the electricity generated by the motor is transmitted to the rear tires. This arrangement improves braking and dealing with. The differential controls how significantly electrical power each and every wheel receives. The torque of the engine is transferred to the wheels according to its pace.
The transmission transfers electricity from the motor to the wheels. It is also referred to as “transgender”. Its job is to guarantee power is sent to the wheels. Electric cars cannot drive them selves and call for a gearbox to travel ahead. It also controls how much electrical power reaches the wheels at any provided moment. The transmission is the very last component of the electricity transmission chain. Even with its a lot of names, the transmission is the most intricate component of a car’s powertrain.
The driveshaft is a extended metal tube that transmits mechanical power from the transmission to the wheels. Cardan joints link to the generate shaft and offer flexible pivot details. The differential assembly is mounted on the push shaft, making it possible for the wheels to flip at various speeds. The differential enables the wheels to turn at various speeds and is very essential when cornering. Axles are also critical to the performance of the automobile.

It has a rubber boot that shields it from dust and dampness

To preserve this boot in great situation, you should clean it with chilly drinking water and a rag. Never spot it in the dryer or in immediate daylight. Heat can deteriorate the rubber and trigger it to shrink or crack. To extend the lifestyle of your rubber boots, implement rubber conditioner to them routinely. Indigenous peoples in the Amazon region acquire latex sap from the bark of rubber trees. Then they place their feet on the fireplace to solidify the sap.
air-compressor

it has a U-formed connector

The generate shaft has a U-joint that transfers rotational power from the motor to the axle. Faulty gimbal joints can result in vibrations when the motor vehicle is in movement. This vibration is often mistaken for a wheel balance difficulty. Wheel equilibrium difficulties can trigger the car to vibrate although driving, although a U-joint failure can lead to the vehicle to vibrate when decelerating and accelerating, and cease when the motor vehicle is stopped.
The drive shaft is connected to the transmission and differential utilizing a U-joint. It enables for little modifications in position between the two components. This stops the differential and transmission from remaining perfectly aligned. The U-joint also enables the generate shaft to be related unconstrained, making it possible for the automobile to move. Its principal goal is to transmit electric power. Of all kinds of elastic couplings, U-joints are the oldest.
Your vehicle’s U-joints need to be inspected at minimum twice a calendar year, and the joints should be greased. When checking the U-joint, you need to hear a dull audio when altering gears. A clicking audio signifies inadequate grease in the bearing. If you hear or feel vibrations when shifting gears, you may possibly require to service the bearings to prolong their lifestyle.

it has a slide-in tube

The telescopic style is a modern day option to classic driveshaft designs. This revolutionary design is dependent on an unconventional style philosophy that brings together improvements in substance science and producing procedures. Consequently, they are far more successful and lighter than standard patterns. Slide-in tubes are a basic and productive design resolution for any automobile application. Here are some of its positive aspects. Read through on to discover why this sort of shaft is ideal for numerous programs.
The telescopic push shaft is an important component of the conventional automobile transmission technique. These driveshafts enable linear movement of the two components, transmitting torque and rotation throughout the vehicle’s driveline. They also take up power if the car collides. Often referred to as foldable driveshafts, their reputation is straight dependent on the evolution of the automotive industry.
air-compressor

It employs a bearing press to substitute worn or ruined U-joints

A bearing press is a unit that utilizes a rotary press mechanism to put in or take away worn or destroyed U-joints from a travel shaft. With this device, you can substitute worn or destroyed U-joints in your auto with relative simplicity. The very first stage entails placing the drive shaft in the vise. Then, use the eleven/16″ socket to press the other cup in far adequate to put in the clips. If the cups do not suit, you can use a bearing press to take away them and repeat the procedure. Following taking away the U-joint, use a grease nipple Make positive the new grease nipple is mounted appropriately.
Worn or damaged U-joints are a key source of driveshaft failure. If one of them have been broken or broken, the complete driveshaft could dislocate and the automobile would get rid of electrical power. Until you have a professional mechanic performing the repairs, you will have to substitute the complete driveshaft. Fortunately, there are numerous approaches to do this oneself.
If any of these warning indications appear on your motor vehicle, you need to take into account replacing the ruined or worn U-joint. Common symptoms of ruined U-joints include rattling or periodic squeaking when shifting, rattling when shifting, wobbling when turning, or rusted oil seals. If you notice any of these indicators, take your motor vehicle to a certified mechanic for a entire inspection. Neglecting to change a worn or damaged u-joint on the driveshaft can end result in high-priced and unsafe repairs and can trigger significant hurt to your motor vehicle.

China manufacturer Quality Small Gasoline Diesel Farm Garden Power Tiller Cultivator Rotary Tillage Machine Walking Tractor Disc Harrow Spare Parts 800 900 Drive Gear and Shaft     near me factory China manufacturer Quality Small Gasoline Diesel Farm Garden Power Tiller Cultivator Rotary Tillage Machine Walking Tractor Disc Harrow Spare Parts 800 900 Drive Gear and Shaft     near me factory